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Abstract
We start with a given modular invariant M of a two-dimensional ŝu(n)k
conformal field theory (CFT) and present a general method for solving the
Ocneanu modular splitting equation and then determine, in a step-by-step
explicit construction, (1) the generalized partition functions corresponding to
the introduction of boundary conditions and defect lines; (2) the quantum
symmetries of the higher ADE graph G associated with the initial modular
invariant M. Note that one does not suppose here that the graph G is already
known, since it appears as a by-product of the calculations. We analyse several
ŝu(3)k exceptional cases at levels 5 and 9.

PACS numbers: 02.20.Uw, 11.25.Hf, 03.65.Fd

1. Introduction

Following the works of [18], it was shown that with every modular invariant of a 2D CFT one
can associate a special kind of quantum groupoı̈d B(G), constructed from the combinatorial
and modular data [13] of a graph G [7, 10, 23, 26, 28]. This quantum groupoı̈d B(G)

plays a central role in the classification of 2D CFT, since it also encodes information on the
theory when considered in various environments (not only on the bulk but also with boundary
conditions and defect lines): the corresponding generalized partition functions are expressed
in terms of a set of non-negative integer coefficients that can be determined from associative
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properties of structural maps of B(G) [1, 20, 24, 26, 30]. A series of papers [4–6, 23, 24, 26]
presents the computations allowing us to obtain these coefficients from a general study of the
graph G and its quantum symmetries. In this approach, the set of graphs G is taken as an input.
For the ŝu(2)k model, the graphs G are the ADE Dynkin diagram, and for the ŝu(3)k the Di
Francesco–Zuber diagrams. A list of graphs has also been proposed in [20] for the ŝu(4)k
model. For a general SU(N) system, the set of graphs G presents the following pattern. There
is always the infinite series of Ak graphs, which are the truncated Weyl alcoves at some level
k of SU(N) irreps. Other infinite series are obtained by orbifolding and conjugation methods,
but there are also some exceptional graphs (generalizing the E6 and E8 diagrams of the SU(2)

series) that cannot be obtained in that way (to some extent, the E7 diagram can be obtained
from a careful study of the D10 case). One of the purposes of this paper is actually to present
a method to obtain these graphs.

We start with a modular invariant of a 2D ŝu(n)k CFT as initial data. Classification of
modular invariants is only completed for n = 2 and 3, but there exist several algorithms,
mostly due to Gannon, that allows one to obtain modular invariants up to rather high levels of
any affine algebra. By solving the modular splitting equation (to be recalled later), we obtain
the coefficients of the generalized partition functions, as well as the quantum symmetries of
the graph G, encoded in the Ocneanu graph Oc(G). The graph G itself is then obtained at this
stage as a subgraph or a module graph of its own Ocneanu graph: it appears as a by-product
of the computations.

Note that the determination of the higher ADE graphs G by solving the modular splitting
equation seems to be the method followed by Ocneanu (see [19]) to obtain the lists of SU(3)

and SU(4) graphs presented in [20], as a generalization of Xu’s algorithm [29] (see also [25]).
But explicitation of his method was never been made available in the literature. The method
that we describe here (that incorporates the solution of the modular splitting equation itself)
was briefly presented in [8] for the study of the non-simply laced diagram F4, and is extended
and presented in more general grounds.

The paper is organized as follows. In section 2, we review some results of CFT in order
to fix our notations, and present the basic steps of the method allowing us to solve the modular
splitting equation. Section 3 treats with more technical details of the resolution, making the
difference between commutativity or non-commutativity of the quantum symmetry algebra.
In the last section, we analyse some examples in order to illustrate the techniques. First, we
treat two exceptional SU(3) modular invariants at level 5, labelled by the graphs E5 and E5/3.
The last example is the level 9 exceptional SU(3) modular invariant, which is a special case
since it leads to a non-commutative algebra of quantum symmetries and that there are two
different graphs, E9 and E9/3, associated with it. We also discuss the third graph initially
associated with the same modular invariant in [11] but later rejected by Ocneanu in [20].

2. CFT and graphs

Consider a 2D CFT defined on a torus, where the chiral algebra is an affine algebra ŝu(n)k at
level k. The modular invariant partition function reads

Z =
∑
λ,µ

χλMλµχµ, (1)

where χλ is the character of the element λ of the finite set of integrable representations
of ŝu(n)k , and where the matrix M is called the modular invariant: it commutes with the
generators S and T of the modular group PSL(2, Z). The introduction of boundary conditions
(labelled by a, b), defect lines (labelled by x, y) or the combination of both, results in the
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following generalized partition functions (see [1, 3, 24]):

Za|b =
∑

λ

(Fλ)abχλ (2)

Zx|y =
∑
λ,µ

(Vλµ)xyχλχµ (3)

Zx|ab =
∑

λ

(FλSx)abχλ. (4)

All coefficients appearing in the above expressions express multiplicities of irreducible
representations in the Hilbert space of the corresponding theory and are therefore non-
negative integers. They are conveniently encoded in a set of matrices: the annular matrices
Fλ with coefficients (Fλ)ab; the double annular matrices Vλµ with coefficients (Vλµ)xy and
the dual annular matrices Sx with coefficients (Sx)ab. The different sets of indices run as
λ,µ = 0, . . . , dI − 1; a, b = 0, . . . , dG − 1 and x, y = 0, . . . , dO − 1. The integer dI is the
number of irreps at the given level k; the integers dG and dO are given in terms of the modular
invariant M by dG = T r(M) and dO = T r(MM†) (see [2, 12, 21]).

Compatibilities conditions—in the same spirit than those defined by Cardy in [3] for
boundary conditions—impose relations on the above coefficients (see [1, 11, 24]). Altogether
they read

FλFλ′ =
∑
λ′′

N λ′′
λλ′Fλ′′ (5)

VλµVλ′µ′ =
∑
λ′′µ′′

N λ′′
λλ′Nµ′′

µµ′Vλ′′µ′′ (6)

SxSy =
∑

z

Oz
yxSz (7)

where N ν
λµ are the fusion coefficients describing the tensor product decomposition λ � µ =∑

ν N ν
λµν of representations λ and µ of ŝu(n)k . They can be encoded in matrices Nλ called

fusion matrices. Oz
xy are the quantum symmetry coefficients and can be encoded in matrices

Ox called quantum symmetry matrices.
The matrices {Fλ,Nλ,Ox, Vλµ, Sx} have non-negative integer coefficients: they can be

seen as the adjacency matrices of a set of graphs. Knowledge of these graphs helps therefore
to the complete determination of the partition functions (2), (3) and (4). All these coefficients
also define (or can be obtained by) structural maps of a special kind of quantum groupoı̈d
[7, 10, 18, 23, 26]. It is not the purpose of this paper to explore those correspondences,
nor to study the mathematical aspects of this quantum groupoı̈d. What we will do here is to
determine, taking as initial data the knowledge of the modular invariant M, all the coefficients
of the above matrices.

2.1. Steps of the resolution

We start with the double fusion equations (6), which are matrix equations involving the double
annular matrices Vλµ, of size dO × dO , with coefficients (Vλµ)xy . Note that these coefficients
can also be encoded in matrices Wxy , of size dI × dI , with coefficients (Wxy)λµ = (Vλµ)xy .
The Wxy are called double toric matrices. When no defect lines are present (x = y = 0), we
must recover the modular invariant of the theory, therefore W00 = M. Using the double toric
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matrices Wxy , the set of equations (6) read∑
z

(Wxz)λµWzy = NλWxyN
tr
µ . (8)

The successive steps of resolution are the following.

Step 1. Toric matrices. Setting x = y = 0 in (8) and using the fact that W00 = M, we get∑
z

(W0z)λµWz0 = NλMNtr
µ . (9)

This equation was first presented by Ocneanu in [20] and is called the modular splitting
equation. The rhs of (9) involves only known quantities, namely the modular invariant M
and the fusion matrices Nλ. The lhs involves the set of toric matrices Wz0 and W0z, which we
determine from this equation.

Step 2. Double fusion matrices. Setting y = 0 in (8), we get∑
z

(Wxz)λµWz0 = NλWx0N
tr
µ . (10)

Once the toric matrices Wx0 have been determined from step 1, the rhs of (10) then involves
only known quantities. Resolution of these equations determines the double toric matrices
Wxy—and equivalently the double fusion matrices Vλµ—appearing in the lhs of (10).

Step 3. Ocneanu graph. The double fusion matrices Vλµ are generated by a subset of
fundamental matrices Vf 0 and V0f , where f stands for the generators of the fusion algebra
(for SU(n) there are n−1 fundamental generators). These matrices are the adjacency matrices
of a graph called the Ocneanu graph. Its graph algebra is the quantum symmetry algebra,
encoded in the set of matrices Ox .

Step 4. Higher ADE graph G. The higher ADE graph G corresponding to the initial modular
invariant M is recovered at this stage as a module graph of the Ocneanu graph. It may be
a subgraph of Oc(G) or an orbifold of one of its subgraphs. One also distinguishes type
I cases (also called subgroup or self-fusion cases) and type II cases (also called module or
non-self-fusion cases).

Step 5. Realization of the Ocneanu algebra. Once the higher ADE graph G has been obtained,
and following the works of [4, 5, 26], we propose a realization of its quantum symmetry
algebra Oc(G) as a particular tensor product of graph algebras. Each case being singular,
we refer to the examples treated in the last section for more details. This realization allows a
simple expression for the matrices Ox and Sx .

Comments. The first three steps of the method presented here can be seen as a generalization
of an algorithm proposed by Xu [29] for the determination of generalized Dynkin diagrams
(see also [2, 25]). The role of the annular matrix element (Fλ)00 in Xu’s construction is played
here by the partition function multiplicity Mλµ = (Vλµ)00. The method described here is
more general, allowing the determination of the set of matrices {Fλ,Nλ,Ox, Vλµ, Sx} and the
corresponding graphs.

3. From the modular invariant to graphs

We start with a modular invariant M at a given level k of a ŝu(n) CFT, and the corresponding
fusion matrices Nλ.
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3.1. Determination of toric matrices Wx0

We compute the set of matrices Kλµ defined by

Kλµ = NλMNtr
µ . (11)

The modular splitting equation (9) then reads

Kλµ =
dO−1∑
z=0

(W0z)λµWz0. (12)

This equation can be viewed as the linear expansion of the matrix Kλµ over the set of toric
matrices Wz0, where the coefficients of this expansion are the non-negative integers (W0z)λµ.
The number dO is the dimension of the Ocneanu quantum symmetry algebra, it is evaluated
by dO = T r(MM†). The algebra of quantum symmetries comes with a basis (call its
elements z) which is special because structure constants of the algebra, in this basis, are
non-negative integers. We introduce the linear map from the space of quantum symmetries
to the space of dI × dI matrices defined by z �→ Wz0. This map is not necessarily injective:
although elements z of the quantum symmetries are linearly independent, it may not be so
for the toric matrices Wz0 (in particular, two distinct elements of the quantum symmetries can
sometimes be associated with the same toric matrix). Let us call r the number of linearly
independent matrices Wz0. Equation (12) tells us that each Kλµ (a matrix), defined by (11),
can be decomposed on the r-dimensional vector space spanned by the vectors (matrices) Wz0.
The number r can be obtained as follows. From (11), we build a matrix K with elements of
the form K{λµ},{λ′µ′}, which means that each line of K is a flattened7 matrix Kλµ. Then r is
obtained as the (line) rank of the matrix K; since the rank gives precisely the maximal number
of independent lines of K, therefore the number r of linearly independent matrices Wz0. Two
cases are therefore to be considered: depending if toric matrices are all linearly independent
(the map z �→ Wz0 is injective and r = dO) or not (r < dO).

We also introduce a scalar product in the vector space of quantum symmetries for which
the z basis is orthonormal. We consider the squared norm of the element

∑
z(W0z)λµz and

denote it ‖Kλµ‖2. This is an abuse of notation, ‘justified’ by equation (12), and in the same
way, we shall often talk, in what follows, of the ‘squared norm of the matrix Kλµ’, therefore
identifying z with Wz0, although the linear map is not necessarily an isomorphism. We have
the following property.

Property 1. The squared norm of the matrix Kλµ is given by

‖Kλµ‖2 = (Kλµ)λ∗µ∗ . (13)

Proof. We have

‖Kλµ‖2 =
∑

z

|(W0z)λ,µ|2 =
∑

z

(W0z)λµ(Wz0)λ∗µ∗ = (Kλµ)λ∗µ∗.

For the second equality we used the following property:

(W0z)λµ = (Wz0)λ∗µ∗ (14)

that can be derived from the relation Vλ∗µ∗ = (Vλµ)tr , where λ∗ is the conjugated irrep of λ

(see [23]). For the last equality we use equation (12) in matrix components. �

7 By flattened matrix we mean that if Kλµ =
(

a ·· b·· ·· ··
c ·· d

)
, then the flattened matrix is (a · ·b · · · · · ·c · ·d).
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We now treat the two cases to be considered. Note that an explicit study of all cases seems
to indicate that the linear independence (or not) of the toric matrices reflects the commutativity
(or not) of the quantum symmetry algebra.

Non-degenerate case r = dO . This happens when all toric matrices Wz0 are linearly
independent. The set of Kλµ matrices is calculated from the initial data M and Nλ from
(11). The determination of the toric matrices Wz0 is recursively obtained from a discussion
of the squared norm of matrices Kλµ, directly obtained from (13), which has to be a sum of
squared integers.

• Consider the set of linearly independent matrices Kλµ of squared norm 1. From (12) the
solution is that each such matrix is equal to a toric matrix Wz0.

• Next we consider the set of linearly independent matrices Kλµ of squared norm 2. In
this case from (12) each such matrix is equal to the sum of two toric matrices. We have
three cases: (i) Kλµ is equal to the sum of two already determined toric matrices (no new
information); (ii) it is the sum of an already determined toric matrix and of a new one; (iii)
it is equal to the sum of two new toric matrices. To distinguish from cases (ii) and (iii),
we calculate the set of differences Kλµ − Wi , where Wi runs into the set of determined
toric matrices, and check if the obtained matrix has non-negative integer coefficients: in
this case, we determine a new toric matrix given by Kλµ − Wi .

• Next we consider the set of linearly independent matrices Kλµ of squared norm 3. From
(12) each such matrix is equal to the sum of three toric matrices. Either (i) Kλµ is equal
to the sum of three already determined toric matrices; (ii) it is equal to the sum of a
determined toric matrix and of two new ones; (iii) it is equal to the sum of two already
determined matrices and a new one; or (iv) it is equal to the sum of three new toric
matrices. We calculate the set of differences Kλµ − Wi and Kλµ − Wi − Wj , where
Wi,Wj runs into the set of determined toric matrices, and check whenever the obtained
matrix has non-negative integer coefficients.

• For the set of linearly independent matrices Kλµ of squared norm 4 there are two
possibilities. Either Kλµ is the sum of four toric matrices, or it is equal to twice a
toric matrix. In the last case, the matrix elements of Kλµ should be either 0 or a multiple
of 2, and the new toric matrix is obtained as Kλµ/2. If not, a similar discussion as the one
made for the previous items allows the determination of the new toric matrices.

• The next step is to generalize the previous discussions for higher values of the squared
norm in a straightforward way.

Once the set of toric matrices Wz0 is determined, we can of course use equation (9) to
check the results.

Degenerate case r < dO . The integer r may be strictly smaller than dO : this happens when
toric matrices Wz0 are not linearly independent. In order to better illustrate what has to be
done in this case, let us treat a ‘virtual’ example. Suppose the dimension of the Ocneanu
algebra is dO = 3, and call z1, z2, z3 the basis elements. The corresponding toric matrices
are Wz1 ,Wz2 ,Wz3 , and suppose they are not linearly independent. For example, let us take
Wz3 = Wz1 + Wz2 , in this case we have r = 2 < dO . We still use the same scalar product
in the algebra of quantum symmetries, and the norm of z3 is of course 1, but, because of the
abuse of language and notation already made before, we shall say that the ‘squared norm’ of
Wz3 is equal to 1 (and not 2, of course!). The problem arising from the fact that toric matrices
may not be linearly independent, so that the linear expansion (12) of Kλµ over the family of
toric matrices may be not unique, can be solved by considering the squared norm of Kλµ.
Continuing with our virtual example, we could hesitate between writing Kλµ = Wz1 + 2Wz2
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or Kλµ = Wz2 + Wz3 , since Wz3 = Wz1 + Wz2 . In the first case the corresponding squared norm
would be 5, and in the second case it would be 2. In all cases we have met, the knowledge of
the squared norm of Kλµ from equation (13) is sufficient to bypass the ambiguity and obtain
the correct linear expansion. The determination of the toric matrices can then be done step by
step, in the same way as we did in the non-degenerate case, starting from squared norm 1 to
higher values. We refer to the ŝu(3) case at level 9 treated in the following section for more
technical details.

3.2. Determination of double toric matrices Wxy

Once we have determined the toric matrices Wx0, we calculate the following set of matrices:

Kx
λµ = NλWx0N

tr
µ . (15)

Then equation (10) reads

Kx
λµ =

∑
z

(Wxz)λµWz0. (16)

This equation can be viewed as the linear expansion of the matrix Kx
λµ over the set of

toric matrices Wz0, where the coefficients of this expansion are the non-negative integers
(Wxz)λµ, that we want to determine. In the non-degenerate case, toric matrices Wz0 are
linearly independent, decomposition (16) is unique and the calculation is straightforward.
In the degenerate case, some care has to be taken since toric matrices Wz0 are not linearly
independent: expansion (16) is therefore not unique. Some coefficients may remain free and
one needs further information to a complete determination (see the following subsection).

The coefficients (Wxz)λµ can also be encoded in the double fusion matrices Vλµ, which
satisfy the double fusion equations (6). Setting µ = µ′ = 0, λ = λ′ = 0 and λ′ = µ = 0,
respectively, in equation (6) gives

Vλ0Vλ′0 =
∑
λ′′

Nλ′′
λλ′Vλ′′0, (17)

V0µV0µ′ =
∑
µ′′

N
µ′′
µµ′V0µ′′ , (18)

Vλµ′ = Vλ0V0µ′ = V0µ′Vλ0. (19)

From equations (17) and (18), we see that the set of matrices Vλ0 and V0λ satisfies the fusion
algebra. These matrices can therefore be determined using these equations from the subset of
matrices Vf 0 and V0f , where f stands for the fundamental generators of the fusion algebra.
For ŝu(2), there is one generator f = 1, while for ŝu(3), there are two conjugated generators
(1, 0) and (0, 1). The determination of double fusion matrices is reduced, by the use of
equations (17)–(19), to the determination of the generators Vf 0 and V0f . It is therefore
sufficient to solve equation (16) only for the pair of indices (λµ) = (f 0) and (λµ) = (0f ),
and then use equations (17)–(19), which simplifies a lot the computational task.

3.3. Determination of the Ocneanu algebra Ox

The matrices Vf 0 and V0f are the adjacency matrices of the Ocneanu graph. We denote
OfL

= Vf 0 and OfR
= V0f , where fL and fR now stand for the left and right generators

of the Ocneanu quantum symmetry algebra. For SU(n), there are n − 1 generators f of the
fusion algebra, and therefore 2(n − 1) generators of the quantum symmetry algebra. The
Ocneanu graph is also the Cayley graph of multiplication by these generators. From
the multiplication by these generators, we can reconstruct the full table of multiplication
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of the quantum symmetry algebra (with elements denoted x, y, z)

xy =
∑

z

Oz
xyz. (20)

This multiplication table is encoded in the ‘quantum symmetry matrices’ Ox , which are the
graph algebra matrices of the Ocneanu graph, with coefficients (Ox)yz = Oz

xy . They satisfy
the following relations (take care of the order of indices since the quantum symmetry algebra
may be non-commutative):

OxOy =
∑

z

(Oy)xzOz. (21)

Once the generators OfL
= Vf 0 and OfR

= V0f have been determined from the previous step,
all quantum symmetry matrices can be computed from (21).

In the degenerate case, the determination of the double toric matrices Wxy from
equation (16) is not straightforward, some coefficients being still free. A solution to this
problem is provided by an analysis of the structure of the Ocneanu graph itself, since it must
satisfy some conjugation and chiral conjugation properties (we refer to the level 9 ŝu(3)

example treated in the following section for further details). Further compatibility conditions
have also to be satisfied and can be used to check the results, or to determine the remaining
coefficients (for degenerate cases). One of these conditions read [9, 23]

OxVλµ = VλµOx =
∑

z

(Vλµ)xzOz. (22)

A special case of this equation, for x = 0, being

Wyy ′ =
∑

z

(Oz)yy ′W0z. (23)

3.4. Determination of the higher ADE graph G

For any ŝu(n) at level k, we have the infinite series of Ak graphs which are the truncated
Weyl alcoves at level k of SU(n) irreps. Other infinite series are obtained by orbifolding
(Dk = Ak/p) and conjugation (A∗

k,D∗
k ) methods, but there are also some exceptional graphs

that cannot be obtained in that way. Even using the fact that graphs have to obey a list of
requirements (such as conjugation, N-ality, spectral properties and that G must be an Ak

module), one still needed to use some good ‘computer aided flair’ to find them [11, 22]. The
basic method to obtain the exceptional graphs was to use the Xu algorithm (see [25, 29]) for
solving (5), at least when the initial data (Fλ)00 are known (from conformal embedding for
instance).

In this ‘historical approach’, the problem of determining the algebra of quantum
symmetries Oc(G) was not addressed, and this algebra was even less used as a tool to determine
G itself. The procedure described in this paper is different. Starting from the modular invariant
Mλµ = (Vλµ)00 as initial data, one solves the modular splitting equation derived from (6) (as
explained in the previous section) and determines directly the algebra of quantum symmetries
Oc(G), without knowing what G itself can be. Then one uses the fact that G should be both
an Ak module and an Oc(G) module (see comments in [9]). Denoting by λ an element of the
fusion algebra, the first module property reads λa = ∑

b(Fλ)abb, with coefficients encoded
by the annular matrices Fλ. The associativity property (λµ)a = λ(µa) imposes the annular
matrices to satisfy the fusion algebra (5). Denoting by x an element of the quantum symmetry
algebra, the second module property reads xa = ∑

b(Sx)abb, with coefficients encoded by the
dual annular matrices Sx . The associativity property (xy)a = x(ya) imposes the dual annular
matrices to satisfy the quantum symmetry algebra (7). In some cases (including all type I
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cases), G directly appears as a subgraph of the Ocneanu graph. In other cases, it appears as a
module over the algebra of a particular subgraph.

The methods we have described allow for the determination of the graph G even when
orbifold and conjugation arguments from the Ak graphs do not apply (the exceptional cases).
It can be used for a general affine algebra ĝk at any given level k, once the corresponding
modular invariant is known. In the following section, we present and illustrate this method
using several exceptional examples. In the su(3) family, there are three exceptional graphs
with self-fusion. They are called E5, E9 and E21. In this paper, we have chosen E5 (a kind of
generalization of the E6 case of su(2)) and E9. The case of E21 (a kind of generalization of
the E8 case of su(2)) is actually very simple to discuss, even simpler than E5 because it does
not admit any non-trivial module graph, and we could have described it as well, along the
same lines. Results concerning E21 and its quantum symmetries can be found in [6, 26] (in
those references, the graph itself is a priori given). The su(3)—analogue of the E7 case of
su(2), which is an exceptional twist of D9, can also be analysed thanks to the modular splitting
formula, of course, but the discussion is quite involved (see [15, 16]). We refer to [27] for a
description of an ŝu(4) example. In [8], these methods were applied to a non-simply laced
example of the su(2) family, where the initial partition function is not modular invariant (it is
invariant under a particular congruence subgroup) and where there is no associated quantum
groupoı̈d.

3.5. Comments

All module, associativity and compatibility conditions described here between the different set
of matrices follow from properties of the quantum groupoı̈d B(G) constructed from the higher
ADE graph G [18, 23, 26]. General results have been published on this quantum groupoı̈d (see
[7, 10, 17, 18, 21]). But we are not aware of any definite list of properties that the graphs G
should satisfy to obtain the right classification. The strategy adopted here is to take as granted
the existence of a quantum groupoı̈d and its corresponding set of properties, and to derive the
graph G as a by-product of the calculations, starting from the only knowledge of the modular
invariant. Note that this seems to be the method adopted by Ocneanu in order to produce his
list of SU(3) and SU(4) graphs presented in [20]. One crucial check for the existence of the
underlying quantum groupoı̈d is the existence of dimensional rules:

dim(B(G)) =
∑

λ

d2
λ =

∑
x

d2
x , (24)

where the dimensions dλ and dx are calculated from the annular and dual annular matrices:
dλ = ∑

a,b(Fλ)ab, dx = ∑
a,b(Sx)ab.

4. Examples

4.1. The E5 case of ŝu(3)

We start with the ŝu(3)5 modular invariant partition function

Z = ∣∣χ5
(0,0) + χ5

(2,2)

∣∣2
+

∣∣χ5
(0,2) + χ5

(3,2)

∣∣2
+

∣∣χ5
(2,0) + χ5

(2,3)

∣∣2

+
∣∣χ5

(2,1) + χ5
(0,5)

∣∣2
+

∣∣χ5
(3,0) + χ5

(0,3)

∣∣2
+

∣∣χ5
(1,2) + χ5

(5,0)

∣∣2
, (25)

where χ5
λ ’s are the characters of ŝu(3)5, labelled by λ = (λ1, λ2) with 0 � λ1, λ2 �

5, λ1 + λ2 � 5. The modular invariant matrix M is read from Z when the later is written8

8 Some authors write instead Z = ∑
λ χλMλµ∗ χ̄µ, and therefore some care has to be taken in order to compare

results since conjugated cases (in particular, figures 2 and 3) must then be interchanged. Here we follow the convention
made in [9].
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(0,0) (1,0)

(0,1)

(5,0)

(0,5)

Figure 1. The A5 diagram.

Z = ∑
λ χλMλµχ̄µ. The number of irreps is dA = 21. λ = (0, 0) is the trivial representation

and there are two fundamental irreps (1, 0) and (0, 1) = (1, 0)∗, where (λ1, λ2)
∗ = (λ2, λ1)

is the conjugated irrep. N(1,0) is the adjacency matrix of the oriented graph A5, which is the
truncated Weyl alcove of SU(3) irreps at level k = 5 (see figure 1). The fusion matrix N(0,1)

is the transposed matrix of N(1,0) and is the adjacency matrix of the same graph with reversed
arrows. Once N(1,0) is known, the other fusion matrices can be obtained from the truncated
recursion formulae of SU(3) irreps, applied for an increasing level up to k:

N(λ,µ) = N(1,0)N(λ−1,µ) − N(λ−1,µ−1) − N(λ−2,µ+1) if µ �= 0

N(λ,0) = N(1,0)N(λ−1,0) − N(λ−2,1) (26)

N(0,λ) = (N(λ,0))
tr ,

where it is understood that N(λ,µ) = 0 if λ < 0 or µ < 0.

Determination of toric matrices Wz0. We have dO = T r(MM†) = 24. The matrices
Kλµ = NλMNtr

µ span a vector space of dimension r = 24. Since r = dO , the toric matrices
Wx0 are linearly independent and form a special basis for this vector space. For each matrix
Kλµ we calculate the squared norm given by ‖Kλµ‖2 = (Kλµ)λ∗µ∗ .

• For squared norm 1, we have 21 linearly independent matrices Kλµ, each one being equal
to a toric matrix Wz0.

• There are 45 linearly independent matrices Kλµ of squared norm 2. Some of them are
equal to the sum of two already determined toric matrices. For a matrix not satisfying
this property, say Kab, we build the set of matrices Kab − Wx , where Wx runs into the
set of determined toric matrices, and look for those which have non-negative integer
coefficients. This condition is strong enough and leads to only one solution (if Kab is the
sum of a determined matrix and a new one). We determine in that way the last three toric
matrices.

• We have therefore determined the set of 24 toric matrices Wx , with 0 � x � 23, and we
can check our result by an explicit verification of the modular splitting equation (9).

Determination of Vλµ. Having determined the set of toric matrices Wx0, we compute the
set of matrices Kx

λµ = NλWx0N
tr
µ . For SU(3) cases, all double fusion matrices Vλµ

are generated by the two fundamental matrices V(1,0),(0,0), V(0,0),(1,0) and their transposed
V(0,1),(0,0) = V tr

(1,0),(0,0), V(0,0),(0,1) = V tr
(0,0),(1,0). In order to determine these matrices, it is

therefore sufficient to compute the decomposition of Kx
(1,0),(0,0) and Kx

(0,0),(1,0) on the set
of toric matrices Wx0 using equation (16). The calculation is straightforward. From the
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10 ⊗ 10 14 ⊗ 10

11 ⊗ 10 13 ⊗ 10

15 ⊗ 10

12 ⊗ 10

21 ⊗ 10 20 ⊗ 10

23 ⊗ 10 24 ⊗ 10

22 ⊗ 10 25 ⊗ 10

10 ⊗ 20 14 ⊗ 20

11 ⊗ 20 13 ⊗ 20

15 ⊗ 20

12 ⊗ 20

21 ⊗ 20 20 ⊗ 20

23 ⊗ 20 24 ⊗ 20

22 ⊗ 20 25 ⊗ 20

Figure 2. Ocneanu graph Oc(E5). The two left chiral generators are 21 ⊗ 10 and 22 ⊗ 10; the two
right chiral generators are 15 ⊗ 20 and 14 ⊗ 20.

knowledge of the fundamental matrices V(1,0),(0,0), V(0,0),(1,0) and their transposed, all double
fusion matrices Vλµ are recursively calculated from equations (17)–(19).

The Ocneanu graph of quantum symmetries. The four fundamental matrices explicitly given
below, in equations (28), are the adjacency matrices of the graph of quantum symmetries
(Ocneanu graph) associated with the initial modular invariant. We display in figure 2 the
graph corresponding to the matrix V(1,0),(0,0) associated with the vertex labelled by 21 ⊗ 10.
V(0,0),(1,0) is associated with the vertex 15 ⊗ 20, and instead of displaying the corresponding
arrows, we display the action of the chiral conjugation C in order to not clutter the figure
(warning: see the last footnote). The arrows corresponding to the matrix V(0,1),(0,0), associated
with the vertex 22 ⊗10, are obtained by reversing the ones of figure 2; for the matrix V(0,0),(0,1),
associated with the vertex 14 ⊗20, we use the chiral conjugation and the reversed arrows.

The generalized Dynkin diagram E5. The graph of figure 2 is made of two copies of
the generalized Dynkin diagram E5. The E5 graph has 12 vertices denoted by 1i , 2i , i =
0, 1, . . . , 5. The unit is 10 and the generators are 21 and 22; the orientation of the graph
corresponds to multiplication by 21. Conjugation corresponds to the symmetry with respect
to the axis passing through vertices 10 and 13: 1∗

0 = 10, 1∗
1 = 15, 1∗

2 = 14, 1∗
3 = 13;

2∗
0 = 23, 2∗

1 = 22, 2∗
4 = 25. The E5 graph determines in a unique way its graph algebra (it is a

subgroup graph). The commutative multiplication table is given by

1i · 1j = 1i+j

1i · 2j = 2i · 1j = 2i+j i, j = 0, 1, . . . , 5 mod 6

2i · 2j = 2i+j + 2i+j−3 + 1i+j−3.

(27)
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From this multiplication table, we get the graph algebra matrices Ga associated with the
vertices a ∈ E5. The one corresponding to the generator 21 is the adjacency matrix of the
graph. The vector space spanned by vertices of E5 is a module under the action of vertices of
A5, the action being encoded by the annular matrices Fλ obtained form the recurrence relation
(26) with the starting point F(0,0) = 1112, F(1,0) = G21 and F(0,1) = G22 .

Choosing a special ordering in the set of indices z of the algebra of quantum symmetries,
and using the 12 × 12 graph algebra matrices Ga of the graph E5, the fundamental double
fusion matrices are given by

V(1,0),(0,0) =
(

G21 ·
· G21

)
V(0,0),(1,0) =

( · G15

G12 G12 + G15

)
V(0,1),(0,0) =

(
G22 ·
· G22

)
V(0,0),(0,1) =

( · G14

G11 G11 + G14

)
.

(28)

Realization of Oc(E5). The algebra of quantum symmetries Oc(E5) can be realized as

Oc(E5) = E5 ⊗J E5 with a ⊗J b · c = a · b∗ ⊗J c for b ∈ J = {1i}, (29)

where J is a subalgebra characterized by modular properties (see [6, 26]). The algebra Oc(E5)

has dimension 12 × 2 = 24, and a basis is given by elements a ⊗J 10 and a ⊗J 20. The
identifications in Oc(E5) are given by

1i ⊗J 1j = 1i+j∗ ⊗J 10

2i ⊗J 1j = 2i+j∗ ⊗J 10
(30)

1i ⊗J 2j = 1i ⊗J 1j · 20 = 1i+j∗ ⊗J 20

2i ⊗J 2j = 2i ⊗J 1j · 20 = 2i+j∗ ⊗J 20.

The chiral conjugation is defined by (a ⊗J b)C = b ⊗J a. The left chiral generator is 21 ⊗J 10

and the right chiral generator is 10 ⊗J 21 = 15 ⊗J 20. Multiplication in Oc(E5) is defined
from the multiplication (27) of E5 together with the identifications (30), and is encoded by the
quantum symmetries matrices Ox . We get

Ox=a⊗J 10 =
(

Ga ·
. Ga

)
Ox=a⊗J 20 =

( · Ga

Ga.G13 Ga(11 + G13)

)
. (31)

The vector space of E5 vertices is also a module under the action of vertices of Oc(E5) defined
by (a ⊗J 10) · b = a · b and (a ⊗J 20) · b = a · 20 · b. The dual annular matrices Sx

are given by Sx=a⊗J 10 = Ga and Sx=a⊗J 20 = G20 · Ga . We check the dimensional rules
dim(B(E5)) = ∑

λ d2
λ = ∑

x d2
x = 29 376.

4.2. The E∗
5 case of ŝu(3)

We start now with the following ŝu(3)5 modular invariant partition function:

Z = ∣∣χ5
(0,0) + χ5

(2,2)

∣∣2
+

∣∣χ5
(3,0) + χ5

(0,3)

∣∣2
+

[(
χ5

(0,2) + χ5
(3,2)

) · (
χ5

(2,0) + χ5
(2,3)

)
+ h.c.

]
+

(
χ5

(2,1) + χ5
(0,5)

) · (
χ5

(1,2) + χ5
(5,0)

)
+ h.c.

]
, (32)

and compute the modular matrix9 M. The fusion matrices Nλ are the same as in the previous
case.

Determination of toric matrices and double fusion matrices. We have dO = T r(MM†) = 24.
The matrices Kλµ = NλMNtr

µ span a vector space of dimension r = dO = 24. The discussion
is the same as in the previous case.
9 Same remark as in the last footnote.
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10 ⊗ 10 14 ⊗ 10

11 ⊗ 10 13 ⊗ 10

15 ⊗ 10

12 ⊗ 10

21 ⊗ 10 20 ⊗ 10

23 ⊗ 10 24 ⊗ 10

22 ⊗ 10 25 ⊗ 10

10 ⊗ 20 14 ⊗ 20

11 ⊗ 20 13 ⊗ 20

15 ⊗ 20

12 ⊗ 20

21 ⊗ 20 20 ⊗ 20

23 ⊗ 20 24 ⊗ 20

22 ⊗ 20 25 ⊗ 20

Figure 3. Ocneanu graph Oc(E5)
∗. The two left chiral generators are 21 ⊗ 10 and 22 ⊗ 10; the

two right chiral generators are 11 ⊗ 20 and 12 ⊗ 20.

• For squared norm 1, we have 21 linearly independent matrices Kλµ defining 21 toric
matrices Wz0.

• There are 45 linearly independent matrices Kλµ of squared norm 2 and the last three toric
matrices Wz0 can be obtained.

Once the toric matrices have been determined, the double fusion matrices are obtained
straightforwardly. For the fundamental ones, we get

V(1,0),(0,0) =
(

G21 ·
· G21

)
V(0,0),(1,0) =

( · G11

G14 G11 + G14

)
V(0,1),(0,0) =

(
G22 ·
· G22

)
V(0,0),(0,1) =

( · G12

G15 G12 + G15

)
.

(33)

The Ocneanu graph of quantum symmetries. We display in figure 3 the graph corresponding
to the matrix V(1,0),(0,0) associated with the vertex labelled by 21 ⊗ 10. V(0,0),(1,0) is associated
with the vertex 11 ⊗ 20. The algebra of quantum symmetries can be realized as

Oc(E∗
5 ) = E5 ⊗J E5 with a ⊗J b · c = a · b ⊗J c for b ∈ J = {1i}. (34)

The algebra Oc(E∗
5 ) has also dimension 12×2 = 24, and a basis is given by elements a ⊗J 10

and a ⊗J 20. The identifications in Oc(E∗
5 ) are given by (different from those of Oc(E5))

1i ⊗J 1j = 1i+j ⊗J 10

2i ⊗J 1j = 2i+j ⊗J 10

1i ⊗J 2j = 1i ⊗J 1j · 20 = 1i+j ⊗J 20

2i ⊗J 2j = 2i ⊗J 1j · 20 = 2i+j ⊗J 20.
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Figure 4. The E∗
5 = E5/3 generalized Dynkin diagram.

The left chiral generator is 21 ⊗J 10 and the right chiral generator is 10 ⊗J 21 = 11 ⊗J 20. The
algebra Oc(E∗

5 ) is isomorphic to Oc(E5); the quantum symmetry matrices Ox are still given
by (31). The difference is in the chiral conjugacy.

The generalized Dynkin diagram E∗
5 = E5/3. The graph associated with the initial modular

invariant (32) is a module graph for the Ocneanu graph displayed in figure 3. It must therefore
be a module graph of the E5 graph itself: it is obtained as the Z3-orbifold graph of E5 (see
[14]). We write this module property ab̃ = ∑

c̃

(
F E

a

)
b̃c̃

c̃, for a ∈ E5 and b̃, c̃ ∈ E5/3, encoded
by the 12 matrices F E

a . From the associative property (a ·b) · c̃ = a ·(b · c̃), these matrices must
satisfy the same commutation relations (27) as the graph algebra of E5, and can be recursively
calculated from F E

21
, which is the adjacency matrix of the E5/3 graph displayed in figure 4.

The E5/3 graph is also a module over the algebra of quantum symmetries, the action being
defined by (a ⊗J 10) · b̃ = a · b̃ and (a ⊗J 20) · b = a · 20 · b̃. The dual annular matrices Sx are
therefore given by Sx=a⊗J 10 = F E

a and Sx=a⊗J 20 = F E
20

· F E
a . We check the dimensional rules

dim(B(E∗
5 )) = ∑

λ d2
λ = ∑

x d2
x = 3264.

So both graphs G = E5 and E5/3 have the same (isomorphic) algebra Oc(G) of quantum
symmetries, but its realization in terms of tensor square of E5 is different in the two cases, as
well as the chiral conjugation, and, of course, its module action on E5 or on E5/3.

4.3. The E9 case of su(3)

We start with the following ŝu(3)9 modular invariant partition function:

Z = ∣∣χ9
0,0 + χ9

0,9 + χ9
9,0 + χ9

1,4 + χ9
4,1 + χ9

4,4

∣∣2
+ 2

∣∣χ9
2,2 + χ9

2,5 + χ9
5,2

∣∣2
, (36)

where χ9
λ ’s are the characters of ŝu(3)9, labelled by λ = (λ1, λ2) with 0 � λ1, λ2 � 9, λ1+λ2 �

9. Note that this modular invariant can be obtained from the conformal embedding of affine
algebras ŝu(3)9 ⊂ (Ê6)1. The modular invariant matrix is recovered fromZ = ∑

λ χλMλµχµ.
The number of irreps is dA = 55. The fusion matrix N(1,0) is the adjacency matrix of the A9

graph, the truncated Weyl alcove of SU(3) irreps at level 9. The other fusion matrices are
determined by the recurrence relation (27).

Determination of toric matrices Wz0. We have dO = T r(MM†) = 72 and therefore an
Ocneanu algebra with 72 generators z and also 72 toric matrices Wz0. However these toric
matrices span a vector space of dimension r = 45 < 72, i.e. they are not all linearly
independent. For each matrix Kλµ = NλMNtr

µ we consider its ‘squared norm’ defined by
‖Kλµ‖2 = (Kλµ)λ∗µ∗ :

• There are 27 matrices Kλµ with squared norm 1, each one defines a toric matrix Wz0.
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• There are 12 linearly independent matrices Kλµ with squared norm 2, but each one is
equal to the sum of two already determined matrices. We do not find any new toric matrix
in this family.

• There are 21 linearly independent matrices Kλµ of squared norm 3, none of them being
equal to the sum of three already obtained matrices. Twelve among these 21 are equal
to the sum of one determined matrix and a matrix having coefficients multiple of 2. A
solution leading to squared norm 3 is to define a new toric matrix by dividing by 2 the
matrix with coefficients multiple of 2, and adding them to the list with a multiplicity
2. From these twelve, we obtain actually only eight different toric matrices (because
some are obtained more than once), each one coming with multiplicity 2. Nine of the
21 matrices have coefficients which are multiple of 3. We define nine new toric matrices
by dividing these matrices by 3; each toric matrix obtained in that way appearing with
multiplicity 3. At that stage, we have determined 27 + (2 × 8) + (3 × 9) = 70 toric
matrices.

• There are 24 linearly independent matrices Kλµ with squared norm 4, but each one is
equal to the sum of four already obtained matrices. We do not recover any new toric
matrix. This is also the case for squared norm 5.

• There are 10 linearly independent matrices Kλµ with squared norm 6. We discard those
that can be written as a linear combination of already determined toric matrices, and
pick up one of the others, for example Kab. We build the list of matrices Kab − Wx , for
Wx running into the set of already obtained toric matrices, searching for matrices with
non-negative coefficients. With our choice, it is so that Kab is the sum of two times a toric
matrix plus a new one which has matrix elements multiple of 2. Dividing the later by 2
and adding it to the list, with multiplicity 2, we get the last toric matrices.

We have indeed therefore determined the 72 toric matrices, 45 (=27+9+8+1) of them
being linearly independent, but appearing with multiplicities (27 of multiplicity one, 9 (=8+1)
of multiplicity 2 and 9 of multiplicity 3). We can check the result by a direct substitution in
the 55 × 55 = 3025 matrix equations over non-negative integers (12).

Determination of V(1,0),(0,0) and V(0,0),(1,0). We compute the set of matrices Kx
λµ = NλWx0N

tr
µ

for {λµ} = {(1, 0), (0, 0)} and {(0, 0), (1, 0)}, and decompose them on the family (not a base)
of toric matrices Wz0 using (12). Since the Wz0 are not linearly independent, the decomposition
is not unique, and we introduce some undetermined coefficients. Imposing that they should
be non-negative integers allows us to fix some of them or to obtain relations between them.
More constraints come from the fact that we have V(0,0),(1,0) = C.V(0,0),(1,0).C

−1, where C is
the chiral operator. Note that C itself is deduced from the previous relation even if V(0,0),(1,0)

and V(0,0),(1,0) still contain free parameters, by using the fact that it is a permutation matrix.
Choosing an appropriate order on the set of indices z, we obtain the following structure for
V(1,0),(0,0):

V(1,0),(0,0) =



Ad(E9) · · · · ·
· Ad(E9) · · · ·
· · Ad(E9) · · ·
· · · Ad(M9) · ·
· · · · Ad(M9) ·
· · · · · Ad(M9)


, (37)

where Ad(E9) and Ad(M9) are 12×12 matrices (still containing some unknown coefficients).
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Figure 5. The graphs E9 and M9.

The generalized Dynkin diagram E9. The Ad(E9) matrix is the adjacency matrix of the graph E9

displayed on the lhs of figure 5. It possesses a Z3 symmetry corresponding to the permutation
of the three ‘wings’ formed by vertices 0i , 1i and 2i . The undetermined coefficients of the
adjacency matrix reflect this symmetry; they are simply fixed once an ordering has been chosen
for the vertices (something similar happens for the Deven series of the su(2) family).

The vector space of the E9 graph is a module over the left–right action of the graph algebra
of the A9 graph, encoded by the annular matrices F E

λ :

A9 × E9 → E9 : λ · a = a · λ =
∑

b

(
F E

λ

)
ab

b λ ∈ A9, a, b ∈ E9. (38)

The F E
λ matrices give a representation of dimension 12 of the fusion algebra and are

determined from the recursion relation (27) with F E
(0,0) = 1112×12, F

E
(1,0) = Ad(E9). We

note that fundamental matrices (for instance F(1,0)) contain, in this case, elements bigger
than 1, however, the ‘rigidity10 condition’ (Fλ)ab = (Fλ∗)ba holds, so that this example
is indeed a higher analogue of the ADE graphs, not a higher analogue of the non-simply
laced cases. Triality and conjugation compatible with the action of A9 can be defined
on the E9 graph. Triality is denoted by the index i ∈ {0, 1, 2} in the set of vertices
0i , 1i , 2i . The conjugation corresponds to the vertical axis going through vertices 00 and
30: 0∗

0 = 00, 1∗
0 = 20, 3∗

0 = 30, 0∗
1 = 02, 1∗

1 = 22, 1∗
2 = 21, 3∗

1 = 32. The Z3-symmetry
action on vertices of E9 is denoted by ρ3. The axis formed by vertices 3i is invariant under
ρ3 and the symmetry permutes the three wings ρ3(00) = 10, ρ3(10) = 20, ρ3(20) = 00;
ρ3(01) = 11, ρ3(11) = 21, ρ3(21) = 01; ρ3(02) = 12, ρ3(12) = 22, ρ3(22) = 02. Once we
have fixed the origin of the graph (the vertex 00), the graph still possesses a Z2 symmetry
corresponding to the permutation of the two remaining wings, formed by vertices 1i and 2i .
We denote by ρ2 this operation: ρ2(1i ) = 2i and ρ2

2 = 11.
The E9 graph has also self-fusion: the vector space spanned by its vertices has an

associative algebra structure, with non-negative structure constants, compatible with the action
of A9. 00 is the unity and the two conjugated generators are 01 and 02. The graph itself is
also the Cayley graph of multiplication by 01. Due to the symmetry of the wings of the graph,

10 We call it that way because of its relation with the theory of rigid categories (see for instance [21]).
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the knowledge of the multiplication by generators 01 and 02 is not sufficient to reconstruct the
whole multiplication table; we have to impose structure coefficients to be non-negative integers
in order to determine a unique solution (see [6, 26]). The whole multiplication table is encoded
in the graph algebra matrices Ga , for a ∈ E9. We give the expression for G10 and G20 , the
other matrices are computed by G00 = 11,G01 = Gtr

02
= Ad(E9),G30 = G01G02 −G00 ,G32 =

Gtr
31

= G01G01 − G02 ,G11 = Gtr
22

= G01G10 ,G12 = Gtr
21

= G02G10 . In the ordered basis
(00, 10, 20, 30; 01, 11, 21, 31; 02, 12, 22, 32),G10 and G20 are given by

G10 = Gtr
20

=



· 1 · · · · · · · · · ·
· · 1 · · · · · · · · ·
1 · · · · · · · · · · ·
· · · 1 · · · · · · · ·
· · · · · 1 · · · · · ·
· · · · · · 1 · · · · ·
· · · · 1 · · · · · · ·
· · · · · · · 1 · · · ·
· · · · · · · · · 1 · ·
· · · · · · · · · · 1 ·
· · · · · · · · 1 · · ·
· · · · · · · · · · · 1



. (39)

Note that multiplication by 10 corresponds to the Z3 operation: 10 · a = ρ3(a). The matrix
G10 is the permutation matrix representing the action of the Z3 operator ρ3:

(
G10

)
ab

= δb,ρ3(a).

We have
(
G10

)3 = 11 and
(
G10

)2 = G20 , so G20 represents the operator (ρ3)
2.

Other aspects and properties of the E9 graph and of its algebra of quantum symmetries
(semi-simple structure of the associated quantum groupoı̈d, semi-simple structure of Oc(E9)

itself, quantum dimensions and quantum mass) are presented in [6, 9, 26].

The generalized Dynkin diagram M9. The matrix Ad(M9) is a 12 × 12 matrix with some
unknown coefficients to be determined. Imposing this matrix to be the adjacency matrix of a
graph such that the vector space spanned by its vertices is a module over the graph algebras
of A9 and of E9 leads to a unique solution. The graph is displayed on the rhs of figure 5 and
corresponds to the Z3-orbifold graph of E9, denoted by M9 = E9/3.

The vector space spanned by vertices of the M9 graph is a module over the left–right
action of the graph algebra of A9 encoded by the annular matrices FM

λ :

A9 × M9 → M9 : λ · ã = ã · λ =
∑

b̃

(
FM

λ

)
ãb̃

b̃ λ ∈ A9, ã, b̃ ∈ M9. (40)

The FM
λ matrices give a representation of dimension 12 of the fusion algebra and can be

determined from the recursion relation (27) with FM
(0,0) = 1112×12, F

M
(1,0) = Ad(M9). Triality

and conjugation compatible with the action of A9 can be defined on the M9 graph. Triality is
denoted by the index i ∈ {0, 1, 2} in the set of vertices ãi ∈ M9. The conjugation corresponds
to the vertical axis going through vertex 0̃0: 0̃∗

0 = 0̃0, 0̃∗
1 = 0̃2, 3̃∗

0 = 3̃0, 3̃′
0
∗ = 3̃′

0, 3̃′′
0
∗ =

3̃′′
0, 3̃∗

1 = 3̃2, 3̃′
1
∗ = 3̃′

2, 3̃′′
1
∗ = 3̃′′

2.
The vector space spanned by vertices of M9 is also a module under the action of the graph

algebra of E9. Here we will distinguish between left and right action. The left action of E9 is
encoded by a set of 12 × 12 matrices denoted P �

λ :

E9 × M9 → M9 : a · b̃ =
∑

c̃

(
P �

a

)
b̃c̃

c̃ a ∈ E9, b̃, c̃ ∈ M9. (41)
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The module property (a · b) · c̃ = a · (b · c̃) imposes P �
a matrices to form a representation of

the graph algebra of E9; they satisfy P �
a P �

b = ∑
c(Ga)bcP

�
c . We compute the set of matrices

P �
a using the multiplicative structure of E9 from the previous relation. We give below the

expression for P �
10

and P �
20

, the other matrices being computed by P �
00

= 11, P �
01

= (
P �

02

)tr =
Ad

(
M9

)
, P �

30
= P �

01
P �

02
− P �

00
, P �

32
= (

P �
31

)tr = P �
01

P �
01

− P �
02

, P �
11

= (
P �

22

)tr = P �
01

P �
10

, P �
12

=(
P �

21

)tr = P �
02

P �
10

. In the ordered basis (0̃0, 3̃0, 3̃′
0, 3̃′′

0; 0̃1, 3̃1, 3̃′
1, 3̃′′

1; 0̃2, 3̃2, 3̃′
2, 3̃′′

2), P
�
10

and
P �

20
are given by

P �
10

= (
P �

20

)tr =



1 · · · · · · · · · · ·
· · 1 · · · · · · · · ·
· · · 1 · · · · · · · ·
· 1 · · · · · · · · · ·
· · · · 1 · · · · · · ·
· · · · · · 1 · · · · ·
· · · · · · · 1 · · · ·
· · · · · 1 · · · · · ·
· · · · · · · · 1 · · ·
· · · · · · · · · · 1 ·
· · · · · · · · · · · 1
· · · · · · · · · 1 · ·



. (42)

There is also an operator ρ ′
3 acting on vertices of theM9 graph, inherited from the Z3 symmetry

of the E9 graph through the orbifold procedure. It satisfies the following property:

ρ3(a)b̃ = aρ ′
3(b̃). (43)

We have 10a = ρ3(a), so ρ ′
3(ã) = 10ã. It is defined by ρ ′

3(0̃i ) = 0̃i , ρ
′
3(3̃i ) = 3̃′

i , ρ
′
3(3̃

′
i ) =

3̃′′
i , ρ

′
3(3̃

′′
i ) = 3̃i , for i = 0, 1, 2. The matrix P �

10
is therefore the permutation matrix

representing the action of the Z3 operator ρ ′
3. We have

(
P �

10

)3 = 11 and
(
P �

10

)2 = P �
20

, so
P �

20
represents the operator (ρ ′

3)
2.

The vector space E9 ⊕M9. We define the vector space H = E9 ⊕M9, and we want to define
(this will be used later) an associative product on H with the following structure:

↗ E9 M9

E9 E9 M9

M9 M9 E9

We define the following actions:

E9 × E9 → E9 : ab =
∑

c

(Ga)bcc

E9 × M9 → M9 : ab̃ =
∑

c̃

(
P �

a

)
b̃c̃

c̃

M9 × E9 → M9 : b̃a =
∑

c̃

(
P r

a

)
b̃c̃

c̃

M9 × M9 → E9 : ãb̃ =
∑

c

(Hã)b̃cc.

(44)

The associativity property on H reads a(bc) = (ab)c ; a(bc̃) = (ab)c̃ ; a(b̃c) = (ab̃)c ;
ã(bc) = (ãb)c ; a(b̃c̃) = (ab̃)c̃ ; ã(bc̃) = (ãb)c̃ ; ã(b̃c) = (ãb̃)c ; ã(b̃c̃) = (ãb̃)c̃, and induce
a set of relations between matrices Ga, P

�
a , P r

a and Hã . In order to satisfy them we found a
unique solution for matrices P r

a and Hã . The right action of E9 on M9 encoded by the set of
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matrices P r
a is defined via the Z2 operator ρ2:

b̃ · a = ρ2(a) · b̃, (45)

so that we have P r
a = P �

ρ2(a). The coefficients of the Hã matrices are given by

(Hã)b̃c = (
P �

ρ2(c)

)
ã∗b̃ = (

P r
c

)
ã∗b̃. (46)

The Ocneanu algebra of quantum symmetries and a realization. The matrix V(1,0),(0,0) is the
adjacency matrix of the left chiral part of the Ocneanu graph. The graph is composed of
six subgraphs, three copies of the E9 graph and three copies of the M9 graph, as showed in
figure 6. We label the vertices as follows: x = a ⊗ 0i with a, 0i ∈ E9 and i = 0, 1, 2 for
vertices of E9-type subgraphs and x = ã ⊗ 3̃i with ã, 3̃i ∈ M9 and i = 0, 1, 2 for vertices
of M9-type subgraphs. The matrix V(1,0),(0,0) corresponds to the multiplication by the left
chiral generator 01 ⊗ 00. The matrix V(0,0),(1,0) is the adjacency matrix of the right chiral
part of the Ocneanu graph Oc(E9), and corresponds to the multiplication by the right chiral
generator 00 ⊗ 01. The dashed lines in the graph correspond to the chiral operator C. We
have V(0,0),(1,0) = CV(1,0),(0,0)C

−1. The multiplication by 00 ⊗ 01 is obtained as follows. We
start with x, apply C, multiply the result by 01 ⊗ 00, and apply C−1 = C. From matrices
V(1,0),(0,0) and V(0,0),(1,0), all others Vλµ (hence also the double toric matrices Wxy) are calculated
straightforwardly using equations (17)–(19).

From the multiplication by chiral left and right generators 01 ⊗ 00 and 00 ⊗ 01 (and their
conjugate), we reconstruct the multiplication table of Oc(E9). As for the graph matrices of E9,
the calculation is not straightforward, but imposing non-negative integer coefficients leads to a
unique solution. The result is encoded in the 72 quantum symmetry matrices Ox of dimension
72 × 72.

Realization of the quantum symmetry algebra. In order to have a compact (readable)
description of these matrices and the multiplicative structure of the algebra of quantum
symmetries, we propose the following realization of this algebra:

Oc = “E9 ⊗Z3 E9”
·= (E9 ⊗ρ E9) ⊕ (M9 ⊗ρ M9), (47)

where the notation ⊗ρ means that the tensor product is quotiented using the Z3 symmetry of
graphs E9 and M9 in the following way. A basis of the quantum symmetry algebra is given
by elements {a ⊗ 0i , ã ⊗ 3̃i} for i = 0, 1, 2. The other elements of E9 ⊗ E9 and M9 ⊗ M9

are identified with basis elements {a ⊗ 0i , ã ⊗ 3̃i} using the Z3 symmetry operators ρ3 and ρ ′
3

of graphs E9 and M9 and the induction–restruction rules between the two graph algebras, as
follows:

• a ⊗ 1i = a ⊗ 10 · 0i = 10 · a ⊗ 0i = ρ3(a) ⊗ 0i (48)

• a ⊗ 2i = a ⊗ 20 · 0i = 20 · a ⊗ 0i = (ρ3)
2(a) ⊗ 0i (49)

• a ⊗ 3i =
∑

ã

(
E0̃0

)
aã

ã ⊗ 3̃i (50)

• ã ⊗ 3̃′
i = ã ⊗ 10 · 3̃i = 10 · ã ⊗ 3̃i = ρ ′

3(ã) ⊗ 3̃i (51)

• ã ⊗ 3̃′′
i = ã ⊗ 20 · 3̃i = 20 · ã ⊗ 3̃i = (ρ ′

3)
2(ã) ⊗ 3̃i (52)

• ã ⊗ 0̃i =
∑

a

(
Etr

0̃0

)
ã,a

a ⊗ 0i . (53)

Here the matrix E0̃0
encodes the branching rules E9 ↪→ M9 (obtained from matrices P �

implementing the E9 (left) action on M9 as follows: (Eb̃)ac̃ = (P �
a )b̃c̃). Explicitly, we have
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Figure 6. The Ocneanu graph Oc(E9) = Oc(M9). The two left chiral generators are 01 ⊗ 00
and 02 ⊗ 00; the two right chiral generators are 00 ⊗ 01 and 00 ⊗ 02. The tensor product a ⊗ b is
denoted with the shorthand notation ab.

E0̃0
=



1 · · · · · · · · · · ·
1 · · · · · · · · · · ·
1 · · · · · · · · · · ·
· 1 1 1 · · · · · · · ·
· · · · 1 · · · · · · ·
· · · · 1 · · · · · · ·
· · · · 1 · · · · · · ·
· · · · · 1 1 1 · · · ·
· · · · · · · · 1 · · ·
· · · · · · · · 1 · · ·
· · · · · · · · 1 · · ·
· · · · · · · · · 1 1 1



00 ↪→ 0̃0

10 ↪→ 0̃0

20 ↪→ 0̃0

30 ↪→ 3̃0 + 3̃′
0 + 3̃′′

0

01 ↪→ 0̃1

11 ↪→ 0̃1

21 ↪→ 0̃1

31 ↪→ 3̃1 + 3̃′
1 + 3̃′′

1

02 ↪→ 0̃2

12 ↪→ 0̃2

22 ↪→ 0̃2

32 ↪→ 3̃2 + 3̃′
2 + 3̃′′

2.

(54)
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The multiplication of the basis generators {a ⊗ 0i , ã ⊗ 3̃i} is then naturally defined using the
multiplication rules (44) and the projections (48)–(53). We introduce the matrices Rr defined
from the right action of E9 on M9: b̃a = ∑

c̃

(
P r

a

)
b̃c̃

c̃ = ∑
c̃

(
Rr

b̃

)
ac̃

c̃. It can be seen that
the algebra Oc(E9) is non-commutative and isomorphic with the direct sum of 9 copies of
2 × 2 matrices and 36 copies of the complex numbers. With our parametrization, the quantum
symmetry matrices read

Oa⊗00 =



Ga · · · · ·
· Ga · · · ·
· · Ga · · ·
· · · P �

a · ·
· · · · P �

a ·
· · · · · P �

a



Oa⊗01 =



· Ga · · · ·
· · Ga · · GaE0

Ga · · GaE0 · ·
· P �

a Etr
0 · · P �

a

(
11 + P �

10

) ·
· · P �

a Etr
0 · · P �

a

· · · P �
a

(
11 + P �

20

) · .



Oa⊗02 =



· · Ga · · ·
Ga · · GaE0 · .

· Ga · · GaE0 ·
· · P �

a Etr
0 · · P �

a

(
11 + P �

10

)
· · · P �

a

(
11 + P �

20

) · ·
· P �

a Etr
0 · · P �

a ·


(55)

Oã⊗3̃0
=



· · · Rr
ã · ·

· Rr
ãE

tr
0 · · Rr

ã

(
11 + P �

10

) ·
· · Rr

ãE
tr
0 · · Rr

ã

(
11 + P �

10

)
Ha · · 2(HãE0) · ·
· Hã

(
11 + G10

) · · HãE0 ·
· · Hã

(
11 + G10

) · · HãE0



Oã⊗3̃1
=



· · · · Rr
ã ·

· · Rr
ãE

tr
0 · · Rr

ã

· · · Rr
ã

(
11 + P �

20

) · ·
· Hã

(
11 + G20

) · · HãE0 ·
· Hã · · HãE0

Hã · · HãE0 · ·



Oã⊗3̃2
=



· · · · · Rr
ã

· · · Rr
ã

(
11 + P �

20

) · ·
· Rr

ãE
tr
0 · · Rr

ã ·
· · Hã

(
11 + G20

) · · HãE0

Hã · · HãE0 · ·
· Hã · · HãE0 .


.
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Triality t is well defined on this algebra: t (ai ⊗ 0j ) = t (ãi ⊗ 3̃j ) = i + j (mod 3). The
left chiral subalgebra (by definition the algebra generated by the left chiral generator 01 ⊗ 00)
is L = {a ⊗ 00}. The right chiral subalgebra (generated by 00 ⊗ 01) is R = {00 ⊗ a}. With the
projections (48)–(53), R corresponds to the set of elements {00 ⊗ 00, 10 ⊗ 00, 20 ⊗ 00, 0̃0 ⊗
3̃0, 00⊗01, 10⊗01, 20⊗01, 0̃0⊗3̃1, 00⊗02, 10⊗02, 20⊗02, 0̃0⊗3̃2}. The ambichiral subalgebra
(by definition the intersection of L and R) is A = {00 ⊗ 00, 10 ⊗ 00, 20 ⊗ 00}. The chiral
operation C on the basis elements is defined by C(u⊗ v) = (v ⊗u), for u, v ∈ H = E9 ⊕M9

(and using the projections (48)–(53)). The self-dual elements obey C(u) = u, they are the
ones in figure 6 which are connected to themselves by the dashed line. A elements are, in
particular, self-dual.

One modular invariant and two graphs. Starting from the modular invariant (36), we obtain
the set of toric matrices Wx0, double fusion matrices Vλµ and quantum symmetry matrices
Ox , together with the corresponding Ocneanu graph. By an analysis of the latter, it clearly
appears that there are two graphs that are modules under the quantum symmetry algebra, the
E9 and M9 graphs. Using the realization of the quantum symmetry algebra described above,
the module structure for E9 is defined by

Oc × E9 → E9


(a ⊗ 0i ) · b

.= a · b · 0i = a · 0i · b

(ã ⊗ 3̃0) · b
.= ã · b · 3̃0

(ã ⊗ 3̃1,2) · b
.= ã · ρ(b) · 3̃1,2 = ã · b · ρ ′(3̃1,2)

(56)

and the corresponding dual annular matrices are:

SE
x=a⊗0i

= G0i
Ga, SE

x=ã⊗3̃0
= L3̃0

Hã, SE
x=ã⊗3̃1,2

= Lρ ′(3̃1,2)
Hã, (57)

where the Lb̃ matrices are defined by a · b̃ = ∑
c̃(Lb̃)ac̃c̃. The module structure for M9 is

defined by:

Oc × M9 → M9

{
(a ⊗ 0i ) · b̃ .= a · b̃ · 0i = a · 0i · b̃

(ã ⊗ 3̃i ) · b̃ .= ã · b̃ · 3̃i

(58)

and the corresponding dual annular matrices are:

SM
x=a⊗0i

= P �
0i
P �

a , SM
x=ã⊗3̃i

= HãL3̃i
. (59)

We have therefore two quantum groupoı̈ds associated with the initial modular invariant,
constructed from the graphs E9 andM9. Setting dE

λ = ∑
a,b

(
F E

λ

)
ab

, dE
x = ∑

a,b

(
SE

x

)
ab

, dM
λ =∑

a,b

(
FM

λ

)
ab

, dM
x = ∑

a,b

(
SM

x

)
ab

, we check the dimensional rules

dim(B(E9)) =
∑

λ

(
dE

λ

)2 =
∑

x

(
dE

x

)2 = 518 976. (60)

dim(B(M9)) =
∑

λ

(
dM

λ

)2 =
∑

x

(
dM

x

)2 = 754 272. (61)

The rejected diagram. In the first list of SU(3)-type graphs presented by Di Francesco and
Zuber in [11], there were three graphs associated with the exceptional modular invariant (36):
the graphs E9,M9 and the one displayed in figure 7, denoted by Z9. This graph was later
rejected by Ocneanu in [20], because some required cohomological property (written in terms
of values for triangular cells) was not fulfilled. In other words, this graph gives rise to a module
over the ring of A9, with the right properties, but the underlying category does not exist.
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Figure 7. The rejected Di Francesco–Zuber graph.

In this paper, the higher Coxeter graphs are obtained as subgraphs or module graphs
of their Ocneanu graph, which encodes the quantum symmetry algebra Oc(G) previously
determined. For type I partition functions (block diagonal with respect to the characters of
the extended chiral algebra) the associated graphs have self-fusion; they appear directly as
subgraphs of their Ocneanu graph (this is the case, for instance, for the E5 and E9 graphs
presented here). For type II partition functions, the associated graphs are called ‘module’
graphs. They define a module over Oc, but they are most easily determined as a module over a
self-fusion subgraph of the Ocneanu graph, called its parent graph. For all su(3) cases studied,
module graphs can be obtained from orbifold or conjugation methods from their parent graph.
This is indeed the case for the conjugate A series and the orbifold and conjugate orbifold
series D and D∗. This is also the case for the E5/3 and M9 = E9/3 graphs. There is also
the exceptional twist, but in this case the graph appears directly as a subgraph of its Ocneanu
graph (see [16]). In the particular case of the graph displayed in figure 7, the graph cannot be
obtained from E9 by orbifold or conjugation methods, and this fact may indicate a hint that
such a graph should be rejected.

Nevertheless, let us present some properties of this graph. The vector space of Z9 is a
module over the left-right action of A9, encoded by the annular matrices FZ

λ computed as
usual from the recursion relation (27) with FZ

(0,0) = 11, FZ
(1,0) = Ad(Z9). The vector space of

Z9 is also a module over the left action of E9, encoded by the set of matrices Da

E9 × Z9 → Z9 : a · b̂ =
∑

ĉ

(Da)b̂ĉĉ a ∈ E9, b̂, ĉ ∈ Z9. (62)

We compute the set of matrices Da using the multiplicative structure of E9 as previously. In
the ordered basis (0̂0, 3̂0, 3̂′

0, 3̂′′
0; 0̂1, 3̂1, 3̂′

1, 3̂′′
1; 0̂2, 3̂2, 3̂′

2, 3̂′′
2), the matrices D10 and D20 are

given by the same matricial expression as in (42). The vector space of Z9 is also a Oc-module.
Using the realization of the quantum symmetry algebra, the action is defined by:

Oc × Z9 → Z9


(a ⊗ 0i ) · b̂

.= a · 0i · b̂

(ã ⊗ 3̃0) · b̂ .= (ã · 3̃0) · t (b̂)

(ã ⊗ 3̃1,2) · b̂ .= (ã · ρ ′(3̃1,2)) · t (b̂)

(63)
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where the operator t is defined on the vertices of Z9 by t (0̂i ) = 0̂i , t (3̂i ) = 3̂i , t (3̂′
i ) =

3̂′′
i , t (3̂

′′
i ) = 3̂′

i . We also define the matrices Dt
a by the relations

(
Dt

a

)
b̂ĉ

= (Da)t(b̂)ĉ. The
quantum symmetry matrices for Z9 are:

SZ
x=a⊗0i

= D0i
Da, SZ

x=ã⊗3̃0
=

∑
c

(Hã)3̃0c
Dt

c, SZ
x=ã⊗3̃1,2

=
∑

c

(Hã)ρ ′(3̃1,2)c
Dt

c. (64)

We can also check the dimensional rules:∑
λ

(
dZ

λ

)2 =
∑

x

(
dZ

x

)2 = 754 272.

Therefore, the graph Z9 satisfies all module properties and dimensional rules. Even if it
does not appear directly as a by-product of the calculations presented in this paper (giving
a hint for its rejection), its formal rejection only seems possible with the additional data of
cohomological nature (cells), by CFT arguments or in the subfactor approach.

Final comments. The Ocneanu graphs displayed in this paper (Oc(E5),Oc(E9)) have been
first obtained by Ocneanu himself. For instance those associated with members of the su(3)

family were displayed on posters during the Bariloche conference (2000) but the full list never
appeared in print. Several techniques [6, 26] allow one to recover some of them from the
knowledge of the Di Francesco–Zuber diagrams. The present paper actually emerged from
our wish to obtain the Ocneanu graphs Oc(G) (and the graphs G themselves, of course) from
the only data provided by the modular invariant.
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